Un intervalo de confianza es una variedad de valores que describen la incertidumbre que rodea una estimación. Indicamos un intervalo de confianza por sus puntos finales; Por ejemplo, el intervalo de confianza del 90% para el número de personas, de todas las edades, en la pobreza en los Estados Unidos en 1995 (basado en la encuesta de población actual de marzo de 1996) es «35,534,124 a 37,315,094». Un intervalo de confianza también es en sí mismo una estimación. Se realiza el uso de un modelo de cómo el muestreo, las entrevistas, la medición y el modelado contribuyen a la incertidumbre sobre la relación entre el valor real de la cantidad que estamos estimando y nuestra estimación de ese valor.
El «90%» en el intervalo de confianza enumerado anteriormente representa un nivel de certeza sobre nuestra estimación. Si tuviéramos que hacer nuevas estimaciones repetidamente usando exactamente el mismo procedimiento (dibujando una nueva muestra, realizando nuevas entrevistas, calculando nuevas estimaciones y nuevos intervalos de confianza), los intervalos de confianza contendrían el promedio de todas las estimaciones del 90% del tiempo. Por lo tanto, hemos producido una sola estimación de una manera que, si se repite indefinidamente, daría como resultado el 90% de los intervalos de confianza formados que contienen el valor verdadero.
Podemos aumentar la expresión de la confianza en nuestra estimación ampliando el intervalo de confianza. Para la misma estimación del número de personas pobres en 1996, el intervalo de confianza del 95% es más amplio: «35,363,606 a 37,485,612». La Oficina del Censo emplea rutinariamente intervalos de confianza del 90%.
¿Que buscan los intervalos de confianza?
Intervalo de confianza: un intervalo de confianza, en estadísticas, se refiere a la probabilidad de que un parámetro de población caiga entre dos valores establecidos. Los intervalos de confianza miden el grado de incertidumbre o certeza en un método de muestreo. Un intervalo de confianza puede tomar cualquier cantidad de probabilidades, siendo el más común un nivel de confianza del 95% o 99%.
Supongamos que un grupo de investigadores está estudiando las alturas de los jugadores de baloncesto de la escuela secundaria. Los investigadores toman una muestra aleatoria de la población y establecen una altura media de 74 pulgadas. La media de 74 pulgadas es una estimación puntual de la media de la población. Una estimación puntual por sí misma es de utilidad limitada porque no revela la incertidumbre asociada con la estimación; No tiene un buen sentido de cuán lejos podría estar esta media de muestra de 74 pulgadas de la media de la población. Lo que falta es el grado de incertidumbre en esta muestra única.
Los intervalos de confianza proporcionan más información que estimaciones de puntos. Al establecer un intervalo de confianza del 95% utilizando la media y la desviación estándar de la muestra, y suponiendo una distribución normal representada por la curva de campana, los investigadores llegan a un límite superior e inferior que contiene la media verdadera del 95% del tiempo. Suponga que el intervalo es de entre 72 pulgadas y 76 pulgadas. Si los investigadores toman 100 muestras aleatorias de la población de jugadores de baloncesto de la escuela secundaria en su conjunto, la media debería caer entre 72 y 76 pulgadas en 95 de esas muestras.
Si los investigadores quieren una confianza aún mayor, pueden ampliar el intervalo a una confianza del 99%. Hacerlo invariablemente crea una gama más amplia, ya que deja espacio para una mayor cantidad de medias de muestra. Si establecen el intervalo de confianza del 99% como entre 70 pulgadas y 78 pulgadas, pueden esperar que 99 de 100 muestras evaluadas contengan un valor medio entre estos números. Un nivel de confianza del 90% significa que esperaríamos que el 90% de las estimaciones de intervalo incluyan el parámetro de población. Del mismo modo, un nivel de confianza del 99% significa que el 95% de los intervalos incluirían el parámetro.
¿Que se busca en un intervalo de confianza?
Dado que las estadísticas usan un espacio muestral y predice las tendencias para toda la población, es bastante natural esperar un cierto grado de error e incertidumbre. Esto se captura a través del intervalo de confianza.
Con frecuencia encontrará este concepto mientras observa los resultados de la encuesta, que toman los datos de algunas personas y los extienden a todo el grupo.
Supongamos que la encuesta muestra que el 34% de las personas votan por el candidato A. La confianza de que estos resultados son precisos para todo el grupo nunca puede ser el 100%; Para esto, la encuesta debería tomarse para todo el grupo.
Por lo tanto, si está viendo, por ejemplo, un intervalo de confianza del 95% en los resultados, podría significar que el resultado final sería del 30-38%. Si desea un intervalo de confianza más alto, digamos 99%, entonces la incertidumbre en el resultado aumentaría; Diga al 28-40%.
El intervalo de confianza depende de una variedad de parámetros, como el número de personas que toman la encuesta y la forma en que representan a todo el grupo.
Para la mayoría de las encuestas prácticas, los resultados se informan en función de un intervalo de confianza del 95%. Se debe tener en cuenta la relación inversa entre el ancho del intervalo de confianza y la certeza de la predicción.
En el análisis estadístico normal, el intervalo de confianza nos dice la confiabilidad de la media de la muestra en comparación con toda la media.
Por ejemplo, para descubrir el tiempo promedio que pasan los estudiantes de una universidad navegando por Internet, uno podría tomar un grupo de estudiantes de muestra de 100, de más de 10,000 estudiantes universitarios.
¿Cómo se aplica el intervalo de confianza?
Otra forma de ver nuestra medida de confianza policial es calcular los intervalos de confianza. Nuestro conjunto de datos, aunque bastante completo, solo incluye información sobre nuestra muestra, las 42,604 personas que respondieron preguntas sobre su confianza en la policía. Podemos calcular los medios de valores variables en nuestro conjunto de datos, pero no podemos estar cien por ciento seguros de que la muestra CSEW es representativa de los medios verdaderos en toda la población de Inglaterra y Gales. Sin embargo, podemos calcular un rango de valores dentro de los cuales es probable que caiga la media en toda la población. Este rango de valores se llama intervalo de confianza. Es posible calcular un intervalo de confianza del 95% y un intervalo de confianza del 99%. Estos intervalos son simplemente una forma de dar un rango de valores que somos justos (95% o 99%) confidentes incluye la media de la población verdadera.
Un intervalo de confianza del 99% le permitirá estar más seguro de que el verdadero valor en la población está representado en el intervalo. Sin embargo, da un intervalo más amplio que un intervalo de confianza del 95%. Para la mayoría de los análisis, es aceptable utilizar un intervalo de confianza del 95% para extender sus resultados a la población general.
Entonces, comencemos calculando un intervalo de confianza del 95% para el nivel medio de confianza en la policía.
Seleccione Analizar, estadísticas descriptivas y luego explore.
Artículos Relacionados:
- El intervalo de confianza es una herramienta estadística que sirve para estimar un intervalo de valores posibles para una población.
- ¿Qué son los intervalos de confianza y cuáles son sus elementos?
- ¿Qué son los intervalos de confianza y por qué son importantes?
- Ejemplo de cálculo de intervalo de confianza para la estimación de una media poblacional